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Preface
to the Second Edition

The major change in this new edition is an increase in the number of
challenging problems. This was requested by our readers. Since the
actuarial examinations are an excellent source of challenging problems,
we have added 109 sample exam problems to our exercise sections. 
(Detailed solutions can be found in the solutions manual). We thank the
Society of Actuaries for permission to use these problems. 

We have added three new sections which cover the bivariate normal
distribution, joint moment generating functions and the multinomial
distribution. 

The authors would like to thank the second edition review team:
Leonard A. Asimow, ASA, Ph.D. Robert Morris University, and
Krupa S. Viswanathan, ASA, Ph.D., Temple University.

Finally we would like to thank Gail Hall for her editorial work on the
text and Marilyn Baleshiski for putting the book together.

Matt Hassett Tempe, Arizona
Don Stewart June, 2006 





Preface

This text provides a first course in probability for students with a basic
calculus background. It has been designed for students who are mostly
interested in the applications of probability to risk management in vital 
modern areas such as insurance, finance, economics, and health sciences. 
The text has many features which are tailored for those students.

Integration of applications and theory. Much of modern probability 
theory was developed for the analysis of important risk management
problems. The student will see here that each concept or technique 
applies not only to the standard card or dice problems, but also to the
analysis of insurance premiums, unemployment durations, and lives of
mortgages. Applications are not separated as if they were an afterthought 
to the theory. The concept of pure premium for an insurance is 
introduced in a section on expected value because the pure premium is an
expected value.

Relevant applications. Applications will be taken from texts, published
studies, and practical experience in actuarial science, finance, and 
economics.

Development of key ideas through well-chosen examples. The text is 
not abstract, axiomatic or proof-oriented. Rather, it shows the student
how to use probability theory to solve practical problems. The student
will be introduced to Bayes’ Theorem with practical examples using
trees and then shown the relevant formula. Expected values of 
distributions such as the gamma will be presented as useful facts, with 
proof left as an honors exercise. The student will focus on applying
Bayes’ Theorem to disease testing or using the gamma distribution to
model claim severity.  

Emphasis on intuitive understanding. Lack of formal proofs does not
correspond to a lack of basic understanding. A well-chosen tree example
shows most students what Bayes’ Theorem is really doing. A simple
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expected value calculation for the exponential distribution or a 
polynomial density function demonstrates how expectations are found. 
The student should feel that he or she understands each concept. The 
words “beyond the scope of this text” will be avoided. 
 
Organization as a useful future reference. The text will present key 
formulas and concepts in clearly identified formula boxes and provide 
useful summary tables. For example, Appendix B will list all major 
distributions covered, along with the density function, mean, variance, 
and moment generating function of each.  
 
Use of technology. Modern technology now enables most students to 
solve practical problems which were once thought to be too involved. 
Thus students might once have integrated to calculate probabilities for an 
exponential distribution, but avoided the same problem for a gamma 
distribution with 5   and 3.   Today any student with a TI-83 
calculator or a personal computer version of MATLAB or Maple or 
Mathematica can calculate probabilities for the latter distribution. The 
text will contain boxed Technology Notes which show what can be done 
with modern calculating tools. These sections can be omitted by students 
or teachers who do not have access to this technology, or required for 
classes in which the technology is available. 
 
The practical and intuitive style of the text will make it useful for a 
number of different course objectives. 
 
A first course in probability for undergraduate mathematics majors. 
This course would enable sophomores to see the power and excitement 
of applied probability early in their programs, and provide an incentive to 
take further probability courses at higher levels. It would be especially 
useful for mathematics majors who are considering careers in actuarial 
science. 
 
An incentive course for talented business majors. The probability 
methods contained here are used on Wall Street, but they are not 
generally required of business students. There is a large untapped pool of 
mathematically-talented business students who could use this course 
experience as a base for a career as a “rocket scientist” in finance or as a 
mathematical economist. 
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An applied review course for theoretically-oriented students. Many 
mathematics majors in the United States take only an advanced, proof-
oriented course in probability. This text can be used for a review of basic 
material in an understandable applied context. Such a review may be 
particularly helpful to mathematics students who decide late in their 
programs to focus on actuarial careers. 
 
The text has been class-tested twice at Arizona State University. Each 
class had a mixed group of actuarial students, mathematically- talented 
students from other areas such as economics, and interested mathematics 
majors. The material covered in one semester was Chapters 1-7, Sections 
8.1-8.5, Sections 9.1-9.4, Chapter 10 and Sections 11.1-11.4. The text is 
also suitable for a pre-calculus introduction to probability using Chapters 
1-6, or a two-semester course which covers the entire text. As always, 
the amount of material covered will depend heavily on the preferences of 
the instructor. 
 
The authors would like to thank the following members of a review team 
which worked carefully through two draft versions of this text:  
 
 Sam Broverman, ASA, Ph.D., University of Toronto 
 Sheldon Eisenberg, Ph.D., University of Hartford 
 Bryan Hearsey, ASA, Ph.D., Lebanon Valley College 
 Tom Herzog, ASA, Ph.D., Department of HUD 
 Eugene Spiegel, Ph.D., University of Connecticut 
 
The review team made many valuable suggestions for improvement and 
corrected many errors. Any errors which remain are the responsibility of 
the authors.  
 
A second group of actuaries reviewed the text from the point of view of 
the actuary working in industry. We would like to thank William 
Gundberg, EA, Brian Januzik, ASA, and Andy Ribaudo, ASA, ACAS, 
FCAS, for valuable discussions on the relation of the text material to the 
day-to-day work of actuarial science. 
 
Special thanks are due to others. Dr. Neil Weiss of Arizona State 
University was always available for extremely helpful discussions 
concerning subtle technical issues. Dr. Michael Ratliff, ASA, of 
Northern Arizona University and Dr. Stuart Klugman, FSA, of Drake 
University read the entire text and made extremely helpful suggestions. 
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Thanks are also due to family members. Peggy Craig-Hassett provided 
warm and caring support throughout the entire process of creating this 
text. John, Thia, Breanna, JJ, Laini, Ben, Flint, Elle and Sabrina all 
enriched our lives, and also provided motivation for some of our 
examples. 
 
We would like to thank the ACTEX team which turned the idea for this 
text into a published work. Richard (Dick) London, FSA, first proposed 
the creation of this text to the authors and has provided editorial guidance 
through every step of the project. Denise Rosengrant did the daily work 
of turning our copy into an actual book.  
 
Finally a word of thanks for our students. Thank you for working with us 
through two semesters of class-testing, and thank you for your positive 
and cooperative spirit throughout. In the end, this text is not ours. It is 
yours because it will only achieve its goals if it works for you. 
 
 
May, 1999 Matthew J. Hassett 
Tempe, Arizona Donald G. Stewart 
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          Chapter 1
Probability:  A Tool for

Risk Management

1.1 Who Uses Probability?

Probability theory is used for decision-making and risk management
throughout modern civilization. Individuals use probability daily,
whether or not they know the mathematical theory in this text. If a
weather forecaster says that there is a 90% chance of rain, people carry
umbrellas. The “90% chance of rain” is a statement of a probability. If a
doctor tells a patient that a surgery has a 50% chance of an unpleasant
side effect, the patient may want to look at other possible forms of
treatment. If a famous stock market analyst states that there is a 90%
chance of a severe drop in the stock market, people sell stocks. All of us
make decisions about the weather, our finances and our health based on
percentage statements which are really probability statements.
 Because probabilities are so important in our analysis of risk,
professionals in a wide range of specialties study probability. Weather
experts use probability to derive the percentages given in their forecasts.
Medical researchers use probability theory in their study of the effective-
ness of new drugs and surgeries. Wall Street firms hire mathematicians
to apply probability in the study of investments.
 The insurance industry has a long tradition of using probability to
manage its risks. If you want to buy car insurance, the price you will pay
is based on the probability that you will have an accident.  (This price is
called a )  Life insurance becomes more expensive to purchasepremium.
as you get older, because there is a higher probability that you will die.
Group health insurance rates are based on the study of the probability
that the group will have a certain level of claims. 
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 The professionals who are responsible for the risk management
and premium calculation in insurance companies are called actuaries.
Actuaries take a long series of exams to be certified, and those exams
emphasize mathematical probability because of its importance in
insurance risk management.  Probability is also used extensively in
investment analysis, banking and corporate finance. To illustrate the
application of probability in financial risk management, the next section
gives a simplified example of how an insurance rate might be set using
probabilities.

1.2 An Example from Insurance

In 2002 deaths from motor vehicle accidents occurred at a rate of 15.5
per 100,000 population.  This is really a statement of a probability. A1

mathematician would say that the probability of death from a motor
vehicle accident in the next year is 15.5/100,000 .000155.œ
 Suppose that you decide to sell insurance and offer to pay $10,000
if an insured person dies in a motor vehicle accident.  (The money will
go to a beneficiary who is named in the policy — perhaps a spouse, a
close friend, or the actuarial program at your alma mater.)  Your idea is
to charge for the insurance and use the money obtained to pay off any
claims that may occur. The tricky question is what to charge.
 You are optimistic and plan to sell 1,000,000 policies. If you
believe the rate of 15.5 deaths from motor vehicles per 100,000 popula-
tion still holds today, you would expect to have to pay 155 claims on
your 1,000,000 policies. You will need 155(10,000) $1,550,000 to payœ
those claims. Since you have 1,000,000 policyholders, you can charge
each one a premium of $1.55. The charge is small, but 1.55(1,000,000)
œ $1,550,000 gives you the money you will need to pay claims.

 This example is oversimplified. In the real insurance business you
would earn interest on the premiums until the claims had to be paid.
There are other more serious questions. Should you expect exactly 155
claims from your 1,000,000 clients just because the national rate is 15.5
claims in 100,000? Does the 2002 rate still apply? How can you pay
expenses and make a profit in addition to paying claims? To answer
these questions requires more knowledge of probability, and that is why

1  , 1996.  Table No. 138, page 101.Statistical Abstract of the United States
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this text does not end here. However, the oversimplified example makes
a point. Knowledge of probability can be used to pool risks and provide
useful goods like insurance. The remainder of this text will be devoted to
teaching the basics of probability to students who wish to apply it in
areas such as insurance, investments, finance and medicine.

1.3 Probability and Statistics

Statistics is a discipline which is based on probability but goes beyond
probability to solve problems involving inferences based on sample data.
For example, statisticians are responsible for the opinion polls which
appear almost every day in the news.  In such polls, a sample of a few
thousand voters are asked to answer a question such as “Do you think the
president is doing a good job?”  The results of this sample survey are
used to make an inference about the percentage of all voters who think
that the president is doing a good job.  The insurance problem in Section
1.2 requires use of both probability and statistics.  In this text, we will
not attempt to teach statistical methods, but we will discuss a great deal
of probability theory that is useful in statistics.  It is best to defer a
detailed discussion of the difference between probability and statistics
until the student has studied both areas.  It is useful to keep in mind that
the disciplines of probability and statistics are related, but not exactly the
same.

1.4 Some History

The origins of probability are a piece of everyday life; the subject was
developed by people who wished to gamble intelligently. Although
games of chance have been played for thousands of years, the
development of a systematic mathematics of probability is more recent.
Mathematical treatments of probability appear to have begun in Italy in
the latter part of the fifteenth century. A gambler’s manual which
considered interesting problems in probability was written by Cardano
(1500-1572).
 The major advance which led to the modern science of probability
was the work of the French mathematician Blaise Pascal. In 1654 Pascal
was given a gaming problem by the gambler Chevalier de Mere. The
problem of points dealt with the division of proceeds of an interrupted
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game. Pascal entered into correspondence with another French mathema-
tician, Pierre de Fermat. The problem was solved in this correspondence,
and this work is regarded as the starting point for modern probability.
 It is important to note that within twenty years of Pascal’s work,
differential and integral calculus was being developed (independently)
by Newton and Leibniz. The subsequent development of probability
theory relied heavily on calculus.
 Probability theory developed at a steady pace during the eighteenth
and nineteenth centuries. Contributions were made by leading scientists
such as James Bernoulli, de Moivre, Legendre, Gauss and Poisson. Their
contributions paved the way for very rapid growth in the twentieth
century.
 Probability is of more recent origin than most of the mathematics
covered in university courses. The computational methods of freshman
calculus were known in the early 1700’s, but many of the probability
distributions in this text were not studied until the 1900’s. The
applications of probability in risk management are even more recent. For
example, the foundations of modern portfolio theory were developed by
Harry Markowitz [11] in 1952. The probabilistic study of mortgage
prepayments was developed in the late 1980’s to study financial
instruments which were first created in the 1970’s and early 1980’s.
 It would appear that actuaries have a longer tradition of use of
probability; a text on life contingencies was published in 1771.2

However, modern stochastic probability models did not seriously
influence the actuarial profession until the 1970’s, and actuarial
researchers are now actively working with the new methods developed
for use in modern finance. The July 2005 copy of the North American
Actuarial Journal that is sitting on my desk has articles with titles like
"Minimizing the Probability of Ruin When Claims Follow Brownian
Motion With Drift." You can't read this article unless you know the
basics contained in this book and some more advanced topics in
probability.
 Probability is a young area, with most of its growth in the twen-
tieth century. It is still developing rapidly and being applied in a wide
range of practical areas. The history is of interest, but the future will be
much more interesting.

2  See the section on Historical Background in the 1999 Society of Actuaries Yearbook,
page 5.
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1.5 Computing Technology

Modern computing technology has made some practical problems easier
to solve. Many probability calculations involve rather difficult integrals;
we can now compute these numerically using computers or modern
calculators. Some problems are difficult to solve analytically but can be
studied using computer simulation. In this text we will give examples of
the use of technology in most sections. We will refer to results obtained
using the TI-83 and TI BA II Plus Professional calculators and
Microsoft® EXCEL. but will not attempt to teach the use of those tools.
The technology sections will be clearly boxed off to separate them from
the remainder of the text.  Students who do not have the technological
background should be aware that this will in no way restrict their
understanding of the theory. However, the technology discussions should
be valuable to the many students who already use modern calculators or
computer packages.





Chapter 2
Counting for Probability

    

2.1 What Is Probability?

People who have never studied the subject understand the intuitive ideas
behind the mathematical concept of probability.  Teachers (including the
authors of this text) usually begin a probability course by asking the
students if they know the probability of a coin toss coming up heads.
The obvious answer is 50% or ½, and most people give the obvious
answer with very little hesitation.  The reasoning behind this answer is
simple.  There are two possible outcomes of the coin toss, heads or tails.
If the coin comes up heads, only one of the two possible outcomes has
occurred.  There is one chance in two of tossing a head.
 The simple reasoning here is based on an assumption — the coin
must be fair, so that heads and tails are equally likely.  If your gambler
friend Fast Eddie invites you into a coin tossing game, you might suspect
that he has altered the coin so that he can get your money.  However, if
you are willing to assume that the coin is fair, you count possibilities and
come up with ½.
 Probabilities are evaluated by counting in a wide variety of
situations.  Gambling related problems involving dice and cards are
typically solved using counting.  For example, suppose you are rolling a
single six-sided die whose sides bear the numbers 1, 2, 3, 4, 5 and 6.
You wish to bet on the event that you will roll a number less than 5.  The
probability of this event is 4/6, since the outcomes 1, 2, 3 and 4 are less
than 5 and there are six possible outcomes (assumed equally likely).  The
approach to probability used is summarized as follows:
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Probability by Counting for Equally Likely Outcomes

Probability of an event Number of outcomes in the event
Total number of possible outcomesœ

    
 Part of the work of this chapter will be to introduce a more precise
mathematical framework for this counting definition. However, this is
not the only way to view probability. There are some cases in which
outcomes may not be equally likely.  A die or a coin may be altered so
that all outcomes are not equally likely.  Suppose that you are tossing a
coin and suspect that it is not fair. Then the probability of tossing a head
cannot be determined by counting, but there is a simple way to estimate
that probability — simply toss the coin a large number of times and
count the number of heads. If you toss the coin 1000 times and observe
650 heads, your best estimate of the probability of a head on one toss is
650/1000 .65. In this case you are using a œ relative frequency
estimate of a probability.

Relative Frequency Estimate of the Probability of an Event

Probability of an event Number of times the event occurs in  trials
œ

8
8    

 We now have two ways of looking at probability, the counting
approach for equally likely outcomes and the relative frequency
approach.  This raises an interesting question.  If outcomes are equally
likely, will both approaches lead to the same probability? For example, if
you try to find the probability of tossing a head for a fair coin by tossing
the coin a large number of times, should you expect to get a value of ½?
The answer to this question is “not exactly, but for a very large number
of tosses you are highly likely to get an answer close to ½.” The more
tosses, the more likely you are to be very close to ½.  We had our
computer simulate different numbers of coin tosses, and came up with
the following results.
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Number of Tosses Number of Heads Probability Estimate

4 1 .25
100 54 .54

1000 524 .524
10,000 4985 .4985

 More will be said later in the text about the mathematical reason-
ing underlying the relative frequency approach.  Many texts identify a
third approach to probability.  That is the  approach tosubjective
probability.  Using this approach, you ask a well-informed person for his
or her personal estimate of the probability of an event.  For example, one
of your authors worked on a business valuation problem which required
knowledge of the probability that an individual would fail to make a
monthly mortgage payment to a company.  He went to an executive of
the company and asked what percent of individuals failed to make the
monthly payment in a typical month.  The executive, relying on his
experience, gave an estimate of 3%, and the valuation problem was
solved using a subjective probability of .03.  The executive’s subjective
estimate of 3% was based on a personal recollection of relative
frequencies he had seen in the past.
 In the remainder of this chapter we will work on building a more
precise mathematical framework for probability.  The counting approach
will play a big part in this framework, but the reader should keep in mind
that many of the probability numbers actually used in calculation may
come from relative frequencies or subjective estimates.

2.2 The Language of Probability; Sets, Sample Spaces
 and Events

If probabilities are to be evaluated by counting outcomes of a probability
experiment, it is essential that all outcomes be specified.  A person who
is not familiar with dice does not know that the possible outcomes for a
single die are 1, 2, 3, 4, 5 and 6.  That person cannot find the probability
of rolling a 1 with a single die because the basic outcomes are unknown.
In every well-defined probability experiment, all possible outcomes must
be specified in some way.
 The language of set theory is very useful in the analysis of out-
comes.  Sets are covered in most modern mathematics courses, and the
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reader is assumed to be familiar with some set theory. For the sake of
completeness, we will review some of the basic ideas of set theory. A set
is a collection of objects such as the numbers 1, 2, 3, 4, 5 and 6. These ob-
jects are called the  or  of the set. If the set is finite andelements members
small enough that we can easily list all of its elements, we can describe
the set by listing all of its elements in braces. For the set above,
W œ {1, 2, 3, 4, 5, 6}. For large or infinite sets, the set-builder notation is
helpful. For example, the set of all positive real numbers may be written
as

W œ B B B {  |  is a real number and 0}.

Often it is assumed that the numbers in question are real numbers, and
the set above is written as {  | 0}.W œ B B 
 We will review more set theory as needed in this chapter. The
important use of set theory here is to provide a precise language for
dealing with the outcomes in a probability experiment. The definition
below uses the set concept to refer to all possible outcomes of a
probability experiment.

  The   for a probability experimentDefinition 2.1 sample space W
is the set of all possible outcomes of the experiment.

  A single die is rolled and the number facing upExample 2.1 
recorded. The sample space is {1, 2, 3, 4, 5, 6}.W œ 

 A coin is tossed and the side facing up is recorded.Example 2.2  
The sample space is { , }.W œ L X 

 Many interesting applications involve a simple two-element
sample space. The following examples are of this type.

   (Death of an insured)  An insurance company isExample 2.3
interested in the probability that an insured will die in the next year. The
sample space is { }.W œ death, survival 

   (Failure of a part in a machine)  A manufacturer isExample 2.4
interested in the probability that a crucial part in a machine will fail in
the next week. The sample space is { }.W œ failure, survival 
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   (Default of a bond)  Companies borrow money theyExample 2.5
need by issuing . A bond is typically sold in $1000 units whichbonds
have a fixed interest rate such as 8% per year for twenty years. When
you buy a bond for $1000, you are actually loaning the company your
$1000 in return for 8% interest per year. You are supposed to get your
$1000 loan back in twenty years. If the company issuing the bonds has
financial trouble, it may declare bankruptcy and  by failing to paydefault
your money back. Investors who buy bonds wish to find the probability
of default. The sample space is { }.W œ default, no default 

   (Prepayment of a mortgage)  Homeowners usuallyExample 2.6
buy their homes by getting a  which is repaid by monthlymortgage loan
payments. The homeowner usually has the right to pay off the mortgage
loan early if that is desirable — because the homeowner decides to move
and sell the house, because interest rates have gone down, or because
someone has won the lottery. Lenders may lose or gain money when a
loan is prepaid early, so they are interested in the probability of
prepayment. If the lender is interested in whether the loan will prepay in
the next month, the sample space is { }.W œ prepayment, no prepayment



 The simple sample spaces above are all of the same type. Some-
thing (a bond, a mortgage, a person, or a part) either continues or
disappears. Despite this deceptive simplicity, the probabilities involved
are of great importance. If a part in your airplane fails, you may become
an insurance death — leading to the prepayment of your mortgage and a
strain on your insurance company and its bonds. The probabilities are
difficult and costly to estimate. Note also that the coin toss sample space
{ , } was the only one in which the two outcomes were equally likely.L X
Luckily for most of us, insured individuals are more likely to live than
die and bonds are more likely to succeed than to default.
 Not all sample spaces are so small or so simple.

 An insurance company has sold 100 individual lifeExample 2.7  
insurance policies. When an insured individual dies, the beneficiary
named in the policy will file a claim for the amount of the policy. You
wish to observe the number of claims filed in the next year. The sample
space consists of all integers from 0 to 100, so {0, 1, 2,  , 100}.W œ á 
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 Some of the previous examples may be looked at in slightly
different ways that lead to different sample spaces. The sample space is
determined by the question you are asking.
   An insurance company sells life insurance to a 30-Example 2.8
year-old female. The company is interested in the age of the insured
when she eventually dies. If the company assumes that the insured will
not live to 110, the sample space is {30, 31, , 109}.W œ á 

   A mortgage lender makes a 30-year monthlyExample 2.9
payment loan. The lender is interested in studying the month in which
the mortgage is paid off. Since there are 360 months in 30 years, the
sample space is {1, 2, 3, ..., 359, 360}.W œ 

 The sample space can also be infinite.

  A stock is purchased for $100. You wish toExample 2.10 
observe the price it can be sold for in one year. Since stock prices are
quoted in dollars and fractions of dollars, the stock could have any non-
negative rational number as its future value. The sample space consists of
all non-negative rational numbers, {  | 0 and  rational}. ThisW œ B B   B
does not imply that the price outcome of $1,000,000,000 is highly likely
in one year — just that it is possible. Note that the price outcome of 0 is
also possible. Stocks can become worthless. 

 The above examples show that the sample space for an experiment
can be a small finite set, a large finite set, or an infinite set.
  In Section 2.1 we looked at the probability of events which were
specified in words, such as “toss a head” or “roll a number less than 5.”
These events also need to be translated into clearly specified sets. For
example, if a single die is rolled, the event “roll a number less than 5”
consists of the outcomes in the set {1, 2, 3, 4}. Note that the set  isI œ I
a subset of the sample space , since every element of  is an element ofW I
W. This leads to the following set-theoretical definition of an event.

  An  is a subset of the sample space .Definition 2.2 event W

 This set-theoretic definition of an event often causes some un-
necessary confusion since people think of an event as something
described in words like “roll a number less than 5 on a roll of a single
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die.” There is no conflict here. The definition above reminds you that
you must take the event described in words and determine precisely what
outcomes are in the event. Below we give a few examples of events
which are stated in words and then translated into subsets of the sample
space.

   A coin is tossed. You wish to find the probabilityExample 2.11
of the event “toss a head.”  The sample space is { , }. The eventW œ L X
is the subset { }.I œ L 

  Example 2.12 An insurance company has sold 100 individual life
policies. The company is interested in the probability that at most 5 of the
policies have death benefit claims in the next year. The sample space is
W œ á I{0, 1, 2, , 100}. The event  is the subset {0, 1, 2, 3, 4, 5}. 

  You buy a stock for $100 and plan to sell it oneExample 2.13 
year later. You are interested in the event  that you make a profit whenI
the stock is sold. The sample space is {  | 0 and  rational}, theW œ B B   B
set of all possible future prices. The event  is the subset           {  |I I œ B
B  B100 and  rational}, the set of all possible future prices which are
greater than the $100 you paid. 

 Problems involving selections from a standard 52 card deck are
common in beginning probability courses. Such problems reflect the origins
of probability. To make listing simpler in card problems, we will adopt the
following abbreviation system:

 : Ace : King : Queen : Jack     E O U N
 : Spade : Heart : Diamond : ClubW L H G
 
We can then describe individual cards by combining letters and numbers.
For example  will stand for the king of hearts and 2  for the 2 ofOL H
diamonds.

  A standard 52 card deck is shuffled and a card isExample 2.14 
picked at random. You are interested in the event that the card is a king.
The sample space, { , , , 3 , 2 }, consists of all 52 cards.W œ EW OW á G G
The event  consists of the four kings, { , , , }.I I œ OW OL OH OG 
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 The examples of sample spaces and events given above are straight-
forward. In many practical problems things become much more complex. The
following sections introduce more set theory and some counting techniques
which will help in analyzing more difficult problems.

2.3 Compound Events; Set Notation

When we refer to events in ordinary language, we often negate them (the
card drawn is  a king) or combine them using the words “and” or “or”not
(the card drawn is a king  an ace). Set theory has a convenient notationor
for use with such .compound events

2.3.1 Negation

The event   is written as ~ . (This may also be written as  .)not I I I

   A single die is rolled, {1, 2, 3, 4, 5, 6}. TheExample 2.15 W œ
event  is the event of rolling a number less than 5, so {1, 2, 3, 4}.I I œ
I I œ does  occur when a 5 or 6 is rolled. Thus ~ {5, 6}.not 

 Note that the event ~  is the set of all outcomes in the sampleI
space which are not in the original event set . The result of removingI
all elements of  from the original sample space  is referred to asI W
W  I I œ W  I I. Thus ~ . This set is called the  of .complement

 Example 2.16  You buy a stock for $100 and wish to evaluate the
probability of selling it for a higher price  in one year. The sampleB
space is { | 0 and  rational}. The event of interest isW œ B B   B
I œ B B  B I{  | 100 and  rational}. The negation ~  is the event that no
profit is made on the sale, so ~  can be written asI

~ { | 0 100 and  rational} .I œ B Ÿ B Ÿ B œ W  I

This can be portrayed graphically on a number line.

        ~ : no profit   : profitI I
        

0 100
  ì ì ââââââââââââ—qqqqqqqqâ
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 Graphical depiction of events is very helpful. The most common
tool for this is the , in which the sample space is portrayedVenn diagram
as a rectangular region and the event is portrayed as a circular region
inside the rectangle. The Venn diagram showing  and ~  is given inI I
the following figure.

   E

                              ~ E

2.3.2 The Compound Events   ,    A or B A and B

We will begin by returning to the familiar example of rolling a single die.
Suppose that we have the opportunity to bet on two different events:

 : an even number is rolled : a number less than 5 is rolledE F

 {2, 4, 6}  {1, 2, 3, 4}E œ œF

 If we bet that  occurs, we will win if any element of the twoE or  F
sets above is rolled.

E F œ {1, 2, 3, 4, 6}or 

In forming the set for   we have combined the sets  and  byE F E F or
listing all outcomes which appear in   or . The resulting set iseither E F
called the of  and , and is written as . It should be clearunion E F E  F
that for any two events  and E F

E F œ E  F or .
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 For the single die roll above, we could also decide to bet on the
event  . In that case,  the event  and the event  mustE F E F and both
occur on the single roll. This can happen only if an outcome occurs
which is common to both events.

E and F œ {2, 4}

In forming the set for we have listed all outcomes which are inE and  F
both sets simultaneously. This set is referred to as the  of intersection E
and , and is written as . For any two events  and F E  F E F

E F œ E  F .and 

  Consider the insurance company which has written 100Example 2.17 
individual life insurance policies and is interested in the number of claims
which will occur in the next year. The sample space is {0, 1, 2, , 100}.W œ á
The company is interested in the following two events:

 :   there are at most 8 claims E
 :   the number of claims is between 5 and 12 (inclusive)F

E and  are given by the setsF

E œ {0, 1, 2, 3, 4, 5, 6, 7, 8}
and

F œ {5, 6, 7, 8, 9, 10, 11, 12}.

Then the events   and    are given byE Eor andF F

E œ E  œ  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}or F F

and

E œ E  œ  {5, 6, 7, 8}.and F F 

 The events    and    can also be represented usingE Eor andF F
Venn diagrams, with overlapping circular regions representing  and .E F
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                        E  E F F

  B   A   A   B 

2.3.3 New Sample Spaces from Old; Ordered Pair Outcomes

In some situations the basic outcomes of interest are actually pairs of
simpler outcomes. The following examples illustrate this.

  (Insurance of a couple)  Sometimes life insuranceExample 2.18 
is written on a husband and wife. Suppose the insurer is interested in
whether one or both members of the couple die in the next year. Then the
insurance company must start by considering the following outcomes:

 : death of the husband  : survival of the husbandH WL L

 : death of the wife   : survival of the wifeH W[ [

Since the insurance company has written a policy insuring both husband
and wife, the sample space of interest consists of pairs which show the
status of both husband and wife. For example, the pair ( , )H WL [

describes the outcome in which the husband dies but the wife survives.
The sample space is

W œ H W H H W W W H{( , ), ( , ), ( , ), ( , )}.L [ L [ L [ L [

In this sample space, events may be more complicated than they sound.
Consider the following event:

L : the husband dies in the next year

L œ H W H H{( , ), ( , )}L [ L [
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The death of the husband is not a single outcome. The insurance com-
pany has insured two people, and has different obligations for each of the
two outcomes in .  The death of the wife is similar.L

[ : the wife dies in the next year

[ œ H H W H{( , ), ( , )}L [ L [

The events  and   are also sets of pairs.L [ L [ or and 

L [ œ H W H H W H{( , ), ( , ), ( , )}L [ L [ L [

L [ œ H H{( , )} L [ 

 Similar reasoning can be used in the study of the failure of two
crucial parts in a machine or the prepayment of two mortgages.

2.4  Set Identities

2.4.1 The Distributive Laws for Sets

The distributive law for real numbers is the familiar

+ ,  - œ +,  +-( ) .

 Two similar distributive laws for set operations are the following:

E  œ E   E  G( ) ( ) ( ) (2.1)F  G F

E  œ E   E  G( ) ( ) ( ) (2.2)F  G F

These laws are helpful in dealing with compound events involving the
connectives  and . They tell us thatand or

E G E E G  (   ) is equivalent to (   )  (   )and or and  or andF F

and

E G E E G (  ) is equivalent to (   )  (  ).or and or and  orF F 
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The validity of these laws can be seen using Venn diagrams. This is
pursued in the exercises. These identities are illustrated in the following
example.

  A financial services company is studying a largeExample 2.19 
pool of individuals who are potential clients. The company offers to sell
its clients stocks, bonds and life insurance. The events of interest are the
following:
  :  the individual owns stocksW

  :  the individual owns bondsF

  :  the individual has life insurance coverageM

The distributive laws tell us that

M  W œ M   M  W( ) ( ) ( )F  F

and
M  W œ M   M  W( ) ( ) ( ).F  F

 
The first identity states that

insured  (owning bonds  stocks)and or

is equivalent to

(insured  owning bonds)  (insured  owning stocks).and or and

The second identity states that

insured  (owning bonds stocks)or and 

is equivalent to

(insured  owning bonds)  (insured  owning stocks).or and or 

2.4.2 De Morgan’s Laws

Two other useful set identities are the following:

~ ( ) ~ ~        (2.3)E  œ E F F

~ ( ) ~ ~   (2.4)E  œ E F F
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These laws state that

not or not and not(   ) is equivalent to (  ) (  )E EF F

and
not and not or not(   ) is equivalent to (  )  (  ).E EF F

As before, verification using Venn diagrams is left for the exercises. The
identity is seen more clearly through an example.

  We return to the events  (ownership of stock) andExample 2.20 W
F (ownership of bonds) in the previous example. De Morgan’s laws state
that

~ ( ) ~ ~W  œ W F F
and

~ ( ) ~ ~ .W  œ W F F

In words, the first identity states that if you don’t own stocks  bonds or
then you don’t own stocks  you don’t own bonds (and vice versa).and
The second identity states that if you don’t own both stocks  bonds,and
then you don’t own stocks  you don’t own bonds (and vice versa).             or 

 De Morgan’s laws and the distributive laws are worth remember-
ing. They enable us to simplify events which are stated verbally or in set
notation. They will be useful in the counting and probability problems
which follow.

2.5 Counting

Since many (not all) probability problems will be solved by counting
outcomes, this section will develop a number of counting principles
which will prove useful in solving probability problems.

2.5.1 Basic Rules

We will first illustrate the basic counting rules by example and then state
the general rules. In counting, we will use the convenient notation

8 E œ E( ) the number of elements in the set (or event) .




